Journal of Organometallic Chemistry, 428 (1992) 259–266 Elsevier Sequoia S.A., Lausanne JOM 22334

Isomerization of alkynemono-ols catalyzed by palladium(0) complex and diols *

Xiyan Lu, Jianguo Ji, Cheng Guo and Wei Shen

Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai, 200032 (People's Rep. of China)

(Received July 7, 1991)

Abstract

Isomerization of alkynemono-ols occurred by the catalysis of $Pd_2(dba)_3 \cdot CHCl_3$ (1)+ⁱPr₃P+ HOCH₂CH₂CH₂OH. Palladium hydride active species were supposed to be formed *in situ* by the oxidative addition of diols to 1 as determined by ¹H NMR spectra.

Introduction

Recently, isomerization of allylic alcohols catalyzed by transition metal complexes has attracted much attention [1-3], but the isomerization reaction of alkynols by transition metal complexes are rare [4,5]. We have reported that alkyne-1,4-diols could chemoselectively isomerize to the corresponding 1,4-diketones by the catalysis of 1, and the *in situ* formation of the catalytically active [Pd-H] species by the reaction of alkyne-1,4-diols and 1 was speculated [6]. Unfortunately, alkynemono-ols failed to isomerize to the corresponding α,β -unsaturated ketones or aldehydes in the same conditions, although this reaction occurred under more severe conditions, *e.g.* at toluene reflux temperature [4-6]. We found that by adding a catalytic amount of diols, the isomerization of alkynemono-ols occurred smoothly under the milder reaction conditions (acetonitrile reflux temperature). We wish to report the details of these isomerization reactions by the catalysis of 1 promoted by diols in acetonitrile.

Results and discussion

Effect of acetic acid

While the isomerization of alkynemono-ols occurred in toluene at 110°C, the reaction did not take place in acetonitrile at 80°C. Trost reported that the

Correspondence to: Dr. X. Lu, Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai, 200032, People's Rep. of China.

^{*} Dedicated to Professor Akio Yamamoto upon his retirement from Tokyo Institute of Technology and in honor of his contributions to organometallic chemistry.

Table 1

Isomerization of alkynemono-ols effected by Pd₂(dba)₃ · CHCl₃ and acetic acid ^a

	$\xrightarrow{1+{}^{i}\mathrm{Pr}_{3}\mathrm{P}}$ HOAc, CH ₃ CN, reflux	$R^1 \xrightarrow{O} R^2 +$	R^3 R^2 R^2
(2)		$R^{1} = R^{3}CH_{2}$ (3)	(4)

Compound			Reaction	Yield (%) ^b	Product 4		
R ¹	R ²		R ³	time (h)		3:4 ^d	
n-C ₄ H ₉	C ₂ H ₅	(2a)	n-C ₃ H ₇	40	79	80:20	
n-C4H9	CH ₃	(2b)	$n C_3 H_7$	65	82	78:22	
n-C5H11	CH ₃	(2c)	n-C ₄ H ₉	65	82	77:23	
n-C ₆ H ₁₃	CH ₃	(2d)	n-C ₅ H ₁₁	65	84	76:24	
n-C ₄ H ₉	p-CH ₃ C ₆ H ₄	(2e)	$n-C_3H_7$	35	90	78:22	
C ₆ H ₅	C_2H_5	(2f)		30	89	-	
C ₆ H ₅	H	(2g)	-	35	85	-	

^a Reaction conditions: a mixture of 2 (2 mmol), 1 (0.1 mmol), ⁱPr₃P (0.2 mmol), HOAc (0.2 mmol) and CH₃CN (5 mL) was refluxed under argon. ^b Isolated yield. ^c All products were fully characterized spectrally. ^d Determined by ¹H NMR spectra.

isomerization of alkynones catalyzed by 1 was promoted by adding acetic acid [7]. We found that the isomerization of alkynemono-ols (2) could occur by the catalysis of 1 and acetic acid under milder condition. ¹H NMR spectra showed the formation of two isomers, (E)- α , β -enones (3) and β , γ -enones (4), in the ratio of about 4 to 1 (Table 1).

Effect of diols

The success of the isomerization of alkynediols catalyzed by 1 in milder conditions [6] made us interested in the use of other diols as promoters. It was found that adding 10 mol% of diol, such as 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol or *cis*-2-butene-1,4-diol, compound **2e** isomerized to the corresponding α,β -enone (**3e**) and β,γ -enone (**4e**) in the ratio of about 4 to 1 by the catalysis of 1 even in acetonitrile (Table 2).

The isomerization of various alkynemono-ols (2) was studied by using $1 + {}^{i}Pr_{3}P$ + HOCH₂CH₂OH as a catalyst in acetonitrile. The results are shown in Table 3. Here, ¹H NMR spectra also showed the formation of two isomers, (*E*)- α , β -enones (3) and β , γ -enones (4) in the ratio of about 4 to 1. This ratio is consistent with our previous work [4] and Hine's results [8].

It is generally suggested that the possible mechanism of the isomerization of alkyne derivatives catalyzed by transition metal complexes is through the repeated addition and elimination of metal hydride species [4-7,9,10]. By hydropalladation and dehydropalladation of alkynemono-ol (2) (Scheme 1), 1,2-dienol (6) or 2,3-dienol (8) intermediate was formed. Then 6 might further tautomerize to the corresponding conjugated enone 3. By hydropalladation and dehydropalladation again, 8 could isomerize to 1,3-dienol (10) which tautomerize to the corresponding unconjugated enone 4. There exists a thermodynamical equilibrium between 3 and 4.

$\frac{1}{p} = \frac{1}{p} = \frac{1}$	101 (ac) catalyzed by 102(00)	
CH ₃ CH ₃ OH <u>1+ⁱPr₃P</u> diol, CH ₃ C reflux 40 fr		+ CH3
(2e)	(3e)	(4e)
Diol	Yield (%) ^b	3:4 ^c
HO(CH ₂) ₂ OH	90	78:22
HO(CH ₂) ₃ OH	93	76:24
HO(CH ₂) ₄ OH	86	75:25
HO(CH ₂) ₅ OH	89	78:22
(Z)-HOCH ₂ CH=CHCH ₂ OH	88	77:23

Isomerization of 1-(p-tolyl)-2-heptyne-1-ol (2e) catalyzed by Pd₂(dba)₃·CHCl₃ and diols ^a

^a Reaction conditions: under argon, a mixture of **2e** (1 mmol), 1 (0.05 mmol), ⁱPr₃P (0.1 mmol), diol (0.2 mmol) and CH₃CN (5 mL) was refluxed for 40 h. ^b Isolated yield. ^c The products were fully characterized spectrally and the ratio determined by ¹H NMR spectra.

Here, the [PdH] active species is formed *in situ* from the oxidative addition of a hydrogen donor to the zero valent palladium complex. The oxidative addition of acetic acid to Pd^0 is well known in the literature [11], but the oxidative addition of hydroxy group of alcohols to Pd^0 is rarely reported. Recently, Pasquali reported the oxidative addition of phenol with Pd^0 only because of the weak acidity of phenol [12]. Yamamoto also found that only those alcohols of sufficient acidity could react with an alkyl palladium complex [13]. The difficulty of the isomerization of alkynemono-ols in acetonitrile is consistent with both Pasquali's and Yamamoto's results that no reaction occurred when aliphatic alcohols were employed.

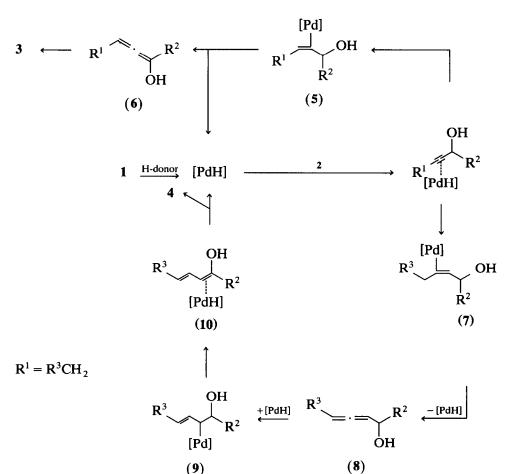
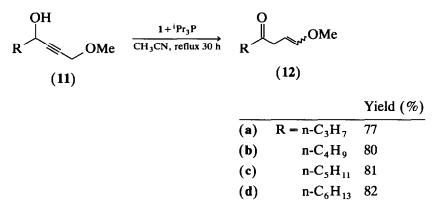

Table 3

Table 2

R^1 H R^2	$\xrightarrow{1 + {}^{i}\mathbf{Pr_{3}P}}$ $\xrightarrow{\mathbf{HOCH_{2}CH_{2}OH, CH_{3}CN}}$ reflux	R^1 R^2 R^2 R^3	M R ²		
(2)		$R^{1} = R^{3}CH_{2}$ (3)	(4)		
Compound	Time (h)	Yield (%) ^b		Product	
				$\overline{3:4^{d}}$	
2b	65	85		77:23	
2c	65	82		84:16	
2d	65	88		79:21	
2e	40	90		78:22	
2 f	40	89		_	


Isomerization of alkynemono-ols catalyzed by Pd₂(dba)₃·CHCl₃ and 1,2-ethanediol^a

^a Reaction conditions: a mixture of 2 (2 mmol), 1 (0.1 mmol), ⁱPr₃P (0.2 mmol), HOCH₂CH₂OH (0.2 mmol) and CH₃CN (5 ml) was refluxed under argon. ^b Isolated yield. ^c The products were determined by ¹H NMR, IR and MS spectra. ^d Determined by ¹H NMR.

Scheme 1. [PdH] = L_m PdH which represents the active species containing a Pd-H bond. It is still not certain whether L represents dba, ⁱPr₃P, solvent, or alkoxy group from the reaction of Pd⁰ with alkynemono-ol or alkanediol.

We have speculated that the isomerization of alkynediols in milder conditions may be related to the easy formation of [PdH] species, which was supported by the high field signals that appeared on monitoring the reaction with ¹H NMR by the oxidative addition of alkynediols with Pd⁰ [6]. Bennett reported the change of some properties of an *sp* carbon atom to that of an *sp*² carbon atom when the carbon–carbon triple bond coordinated to a transition metal complex [14]. This change will make the chelation of alkynediols with palladium possible, which may assist the oxidative addition of an O–H bond to Pd⁰. Minn reported that only those propargylic alcohols of heterocycle compounds containing nitrogen atoms could isomerize to the corresponding α,β -unsaturated ketones by the catalysis of Pd⁰ [15]. These results imply that the chelation between the substrate and Pd⁰ is important in the oxidative addition reaction to generate the [PdH] catalytically active species. In order to investigate the role of the possible chelation in assisting the oxidative addition in forming [PdH] species, an ether substituted alkynemono-ol (11), which may possibly chelate with Pd⁰, was used. On refluxing 11 with 1 and ⁱPr₃P in acetonitrile for 30 h, 11 was completely isomerized to the corresponding product, γ -methoxy- β , γ -unsaturated ketones (12) in high yield. The formation of the β , γ -unsaturated ketones as the main products may be due to the conjugation between the lone pair electrons of the oxygen atom of the methoxyl group with the carbon-carbon double bond [16].

The oxidative addition of HCl and CF_3CO_2H to Pd^0 has been reported [17]. Although the oxidative addition of acetic acid to Pd^0 can occur [7–11], neither isolation of the oxidative addition product nor any special evidence has been given in the literature. Evidence for the formation of a [PdH] species by oxidative addition of hydrogen-donors with Pd^0 was obtained by monitoring the reaction with ¹H NMR spectroscopy. Table 4 shows that acetic acid, 3-hexyne-2,5-diol, 1-methoxy-2-octyne-4-ol (entries 1–3) and 1 give characteristic ¹H NMR signals at high field, which is in the range of characteristic signals of [PdH] (–3.0 to – 19.0 ppm) [18]. While we failed to observe the characteristic signal of [PdH] species in relation to alkynemono-ol 2e (entry 4), the characteristic signal of [PdH] species at high field appear when a catalytic amount of 1,2-ethanediol is added into the NMR tube (entry 5) which implies that the diols do play an important role in 'he formation of [PdH] species.

Table 4
¹ H NMR study of the reaction of hydrogen donors with $Pd_2(dba)_3 \cdot CHCl_3^{a}$

Entry	Hydrogen donor	Solvent	¹ H NMR (δ ppm)
1	CH ₃ CO ₂ H	CD ₃ CN	- 14.25
2	CH ₃ CH(OH)C=CCH(OH)CH ₃	CD ₃ CN	-9.2, -16.2, -18.7
3	n-C₄H ₉ CH(OH)C≡CCH ₂ OCH ₃	CDCl ₃	- 15.78
4	$p-CH_{3}C_{6}H_{4}CH(OH)C=C(n-C_{4}H_{9})(2e)$	CDCl	None
5	$2e + HO(CH_2)_2OH^b$	CDCl ₃	- 10.10

^a Reaction conditions: a mixture of hydrogen donor (0.1 mmol), 1 (0.02 mmol), ${}^{i}Pr_{3}P$ (0.04 mmol) and the solvent (0.5 mL) was sealed into a NMR tube under argon and allowed to stand at room temperature for 8 h. ^b The conditions were the same as above, except using 2e (0.1 mmol), 1 (0.02 mmol), ${}^{i}Pr_{3}P$ (0.04 mmol) and 1,2-ethanediol (0.04 mmol).

In conclusion, the addition of a catalytic amount of diols could promote the isomerization of alkynemono-ols to α,β -unsaturated ketones. This provides a neutral, mild, convenient method to prepare enones from the isomerization of easily available alkynemono-ols.

Experimental section

All reactions were carried out under a prepurified argon atmosphere. Acetonitrile was distilled from phosphorus pentoxide under a nitrogen atmosphere. ¹H NMR were recorded on an EM-360, Varian XL-200, or AMX-600 spectrometer. Chemical shifts are reported as δ values in parts per million with Me₄Si as an internal standard. Infrared spectra were taken as liquid film with an IR-440 instrument. Mass spectral data were obtained with electron ionization on a Finnigan 4021 spectrometer.

Preparation of alkynemono-ols

The alkynemono-ols, 4-nonyn-3-ol (2a) [19], 3-octyn-2-ol (2b) [20], 3-nonyn-2-ol (2c) [21], 3-undecyn-2-ol (2d) [22], 1-(4-methylphenyl)-2-heptyn-1-ol (2e), 1-phenyl-1-pentyn-3-ol (2f) [19], and 3-phenyl-propynol (2g) [23] were prepared by the reaction of acetylenic Grignard derivatives or lithium alkynylides with the corresponding aldehyde as reported [24].

Isomerization of alkynemono-ols effected by 1 and acetic acid

General procedure: under argon, a mixture of alkynemono-ol (2 mmol), 1 (0.1 mmol), ${}^{i}Pr_{3}P$ (0.2 mmol), HOAc (0.2 mmol) and CH₃CN (5 ml) was heated under reflux. After cooling and removal of the solvent, the residue was distilled under reduced pressure to obtain the products (Table 1).

Isomerization of alkynemono-ols effected by 1 and diols

General procedure: under argon, a mixture of alkynemono-ol (2 mmol), 1 (0.1 mmol), ${}^{i}Pr_{3}P$ (0.2 mmol), diol (0.2 mmol) and CH₃CN (5 ml) was heated under reflux. After cooling and removal of the solvent, the residue was distilled under reduced pressure to give the products (Tables 2 and 3).

(E)-4-Nonen-3-one (3a) + 5-nonen-3-one (4a)

B.p. 70-80°C (bath temperature)/5 mmHg [25]. IR (neat): 3050, 1720, 1680, 1640, 1620 cm⁻¹; MS: m/e 140 (M^+), 125, 111, 98, 97, 83, 57, 43. ¹H NMR (CCl₄/60 MHz): **3a**: 6.7 (dm, J = 16 Hz, 1H), 5.8 (d, J = 16 Hz, 1H), 2.4-1.9 (m, 4H), 1.4-0.9 (m, 10H) ppm; **4a**: 5.3 (m, 2H), 3.0 (d, J = 5 Hz, 2H), 2.4-1.9 (m, 4H), 1.4-0.9 (m, 8H) ppm.

(E)-3-Octen-2-one (3b) and 4-octen-2-one (4b)

B.p. 75-80°C (bath temperature)/6 mmHg (lit. [26] b.p. 75°C/15 mmHg). IR (neat): 3030, 1720, 1680, 1640, 1620 cm⁻¹. MS: m/e 126 (M^+), 111, 97, 83, 81, 71, 69, 55, 43. ¹H NMR (CCl₄/60 MHz): **3b**: 6.9 (dt, J = 16 Hz, 6 Hz, 1H), 6.0 (d, J = 16 Hz, 1H), 2.2 (m, 5H), 1.5-1.0 (m, 7H) ppm; **4b**: 5.4 (m, 2H), 3.0 (m, 2H), 2.2 (m, 5H), 1.5-1.0 (m, 5H) ppm.

(E)-3-Nonen-2-one (3c) and 4-nonen-2-one (4c)

B.p. 70-80°C (bath temperature)/10 mmHg (lit. [26] b.p. 92°C/19 mmHg). IR (neat): 3030, 1720, 1680, 1640, 1620 cm⁻¹. MS: m/e 140 (M^+), 125, 111, 97, 83, 82, 71, 69, 55, 43. ¹H NMR (CCl₄/60 MHz): 3c: 6.9 (dt, J = 16 Hz, 6 Hz, 1H), 6.0 (d, J = 16 Hz, 1H), 2.3 (m, 5H), 1.5-0.9 (m, 9H) ppm; 4c: 5.4 (m, 2H), 3.0 (d, J = 5 Hz, 2H), 2.3 (m, 5H), 1.5-0.9 (m, 7H) ppm.

(E)-3-Undecen-2-one (3d) and 4-undecen-2-one (4d)

B.p. 90–100°C (bath temperature)/1 mmHg [27]. IR (neat): 3040, 1720, 1680, 1630, 1640 cm⁻¹. MS: m/e 168 (M^+), 153, 139, 125, 115, 97, 85, 83, 71, 69, 57, 43. ¹H NMR (CCl₄/60 MHz): **3d**: 6.8 (dt, J = 16 Hz, 6 Hz, 1H), 5.9 (d, J = 16 Hz, 1H), 2.3–2.0 (m, 5H), 1.5–0.9 (m, 13H) ppm; **4d**: 5.4 (m, 2H), 3.0 (d, J = 5 Hz, 2H), 2.3 (m, 5H), 1.5–0.9 (m, 11H) ppm.

(E)-1-(p-Tolyl)-2-hepten-1-one (3e) and 1-(p-tolyl)-3-hepten-1-one (4e)

B.p. 120–130°C (bath temperature)/1 mmHg [28]. IR (neat): 3030, 1690, 1670, 1620, 1600, 1580, 1500 cm⁻¹. MS: m/e 202 (M^+), 187, 173, 159, 147, 145, 119, 91, 77, 57, 55, 43. ¹H NMR (CCl₄/60 MHz): **3e**: 7.8 (d, J = 8 Hz, 2H), 7.1 (d, J = 8 Hz, 2H), 6.9 (dt, J = 16 Hz, 5 Hz, 1H), 6.1 (d, J = 16 Hz, 1H), 2.3–2.1 (m, 5H), 1.5–1.3 (m, 4H), 1.0 (t, J = 2 Hz, 3H) ppm; **4e**: 7.8 (d, J = 8 Hz, 2H), 7.1 (d, J = 8 Hz, 2H), 5.4 (m, 2H), 3.0 (d, J = 5 Hz, 2H), 2.3–2.1 (m, 5H), 1.3 (m, 2H), 1.0 (t, J = 2 Hz, 3H) ppm.

(E)-1-Phenyl-1-penten-3-one (3f)

B.p. 110–115°C (bath temperature)/1 mmHg (lit. [26] b.p. 97°C/0.3 mmHg). IR (neat): 3010, 1690, 1660, 1620, 1580, 1500, 980 cm⁻¹. MS: m/e 160 (M^+), 144, 131, 103, 77, 57, 55. ¹H NMR (CCl₄/60 MHz): 7.5 (d, J = 16 Hz, 1H), 7.3–7.0 (m, 5H), 6.5 (d, J = 16 Hz, 1H), 2.4 (q, 2H), 1.1 (t, J = 2 Hz, 3H) ppm.

(E)-1-Phenyl-propen-3-al (3g)

B.p. 80°C (bath temperature)/5 mmHg (lit. [29] b.p. 220–225°C). IR (neat): 3010, 2700, 1680, 1620, 1600, 1580, 1500, 980 cm⁻¹. MS: m/e 130 (M^+), 129, 105, 91, 77, 51. ¹H NMR (CCl₄/60 MHz): 9.4 (d, J = 8 Hz, 1H), 7.4 (m, 5H), 7.1 (d, J = 16 Hz, 1H), 6.4 (dd, J = 16 Hz, 8 Hz, 1H) ppm.

Isomerization of 1-methoxy-alkyn-4-ols (11) catalyzed by $Pd_2(dba)_3 \cdot CHCl_3$ (1)

General procedure: a mixture of 11 (2 mmol), 1 (0.1 mmol) and ${}^{i}Pr_{3}P$ (0.2 mmol) in acetonitrile (10 ml) was heated under reflux for about 30 h until the reaction was complete as monitored by TLC. After cooling the mixture and removal of the solvent, the red residue was distilled under reduced pressure to give 1-methoxy-1-alken-4-one (12). The spectral data of the products (12a-12d) were identical with the reported data [16].

¹H NMR study of the reaction of 1 and hydrogen donors

General procedure: under argon, a mixture of hydrogen donor (0.1 mmol), 1 (0.02 mmol), ${}^{i}Pr_{3}P$ (0.04 mmol) and CD₃CN or CDCl₃ (0.5 mL) was sealed in a NMR tube and allowed to stand at room temperature for 8 h. The determination was carried out using a Varian XL-200 (entries 1-4) or AMX-600 spectrometer (entry 5). The results are shown in Table 4.

Acknowledgement

Financial support from the National Natural Science Foundation of China and Academia Sinica is gratefully acknowledged.

References

- 1 H.M. Colquhoun, J. Holton, D.J. Thompson and M.V. Twigg, New Pathways for Organic Synthesis. Practical Applications of Transition Metals, Plenum Press, New York, 1984, p. 173.
- 2 R.A.W. Johnstone, A.H. Wibey and I.D. Entwistle, Chem. Rev., 85 (1985) 129.
- 3 P.A. Chaloner, Handbook of Coordination Catalysis in Organic Chemistry, Butterworth, London, 1986.
- 4 D. Ma and X. Lu, Tetrahedron Lett., 30 (1989) 2109.
- 5 D. Ma and X. Lu, J. Chem. Soc., Chem. Commun., (1989) 890.
- 6 X. Lu, J. Ji, D. Ma and W. Shen, J. Org. Chem., 56 (1991) 5774.
- 7 B.M. Trost and T. Schmidt, J. Am. Chem. Soc., 110 (1988) 2301.
- 8 S. Patai and Z. Rappoport, The Chemistry of Enones, Wiley, Chichester, 1989, p. 561.
- 9 X. Lu and D. Ma, Pure Appl. Chem., 62 (1990) 723.
- 10 Y. Inoue and S. Imaizumi, J. Mol. Catalysis, 49 (1988) L19.
- 11 B.M. Trost and J.M. Tour, J. Am. Chem. Soc., 109 (1987) 5268.
- 12 C. Dibugno, M. Pasquali, P. Leoni, P. Sabationo and D. Braga, Inorg. Chem., 28 (1989) 1390.
- 13 Y.-J. Kim, K. Osakada, A. Takenaka and A. Yamamoto, J. Am. Chem. Soc., 112 (1990) 1096.
- 14 M.A. Bennett, Pure Appl. Chem., 61 (1989) 1695.
- 15 K. Minn, Syn. Lett., (1991) 115.
- 16 X. Lu, C. Guo and D. Ma, J. Org. Chem., 56 (1991) 6712.
- 17 P.M. Maitlis, P. Espinet and M.J.H. Russell, in G. Wilkinson, F.G.A. Stone and E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, Vol. 6, Pergamon Press, Oxford, 1982, p. 341.
- 18 P.M. Maitlis, P. Espinet and M.J.H. Russell, in G. Wilkinson, F.G.A. Stone and E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, Vol. 6, Pergamon Press, Oxford, 1982, p. 342.
- 19 H.C. Brown, G.A. Molander, S.M. Singh and U.S. Racherla, J. Org. Chem. 50 (1985) 1577.
- 20 H. Normant and T. Cuvigny, Bull. Soc. Chim. Fr., (1957) 1447.
- 21 W.J. Kinnard, Jr., E.C. Reif and J.P. Bulkley, J. Am. Pharm. Assoc., 45 (1956) 801.
- 22 J.A. Marshall, E.D. Robinson and A. Zapata, J. Org. Chem., 54 (1989) 5854.
- 23 X. Zhang and W. Zhou, Acta Chim. Sin., 41 (1981) 466.
- 24 L. Brandsma, Preparative Acetylenic Chemistry, 2nd edition, Elsevier, Amsterdam, 1988.
- 25 T. Mise, P. Hong and H. Yamazaki, Chem. Lett., (1982) 401.
- 26 G. Sturtz, Bull. Soc. Chim. Fr., (1967) 2477.
- 27 S. Chang, R.J. Peterson and C.-T. Ho, J. Am. Oil Chem. Soc., 55 (1978) 718.
- 28 C. Kashima, T. Tajima and Y. Omote, Heterocycles, 20 (1983) 1811.
- 29 R.E. Benson (Ed.), Organic Synthesis, Vol. 51, Wiley, New York, 1971, p. 11.